Google全面擴展Gemini AI生態系:從CLI工具到企業視頻生成,重新定義開發者體驗

Google最新發布Gemini 2.5系列全面開放,推出開發者CLI工具和Veo 3視頻生成模型,同時在搜尋和機器人領域實現突破性整合

Google Gemini AI生態系統擴展
Google Gemini AI生態系統擴展

Google全面擴展Gemini AI生態系:從CLI工具到企業視頻生成,重新定義開發者體驗

Google在2025年持續擴大其Gemini AI生態系統,最新發布的一系列更新涵蓋了從開發者工具到企業級視頻生成的多個領域。Gemini 2.5 Flash和Pro的全面開放,配合新推出的CLI工具和視頻生成模型,展現了Google在AI領域的全面佈局策略。

Gemini 2.5系列全面開放

模型家族擴展與性能提升

核心模型發布 Google宣布Gemini 2.5家族的多個版本正式向所有用戶開放:

# Gemini 2.5模型系列分析
class Gemini25ModelFamily:
    def __init__(self):
        self.models = {
            "gemini_2_5_flash": {
                "positioning": "通用高效模型",
                "key_features": [
                    "優化的推理速度",
                    "成本效益最佳化",
                    "廣泛應用場景支援",
                    "API整合友善"
                ],
                "target_audience": "大眾開發者",
                "availability": "全面開放"
            },
            
            "gemini_2_5_pro": {
                "positioning": "專業級高性能模型",
                "key_features": [
                    "複雜任務處理能力",
                    "高精度輸出",
                    "企業級穩定性",
                    "進階API功能"
                ],
                "target_audience": "企業用戶",
                "availability": "全面開放"
            },
            
            "gemini_2_5_flash_lite": {
                "positioning": "最經濟高效模型",
                "key_features": [
                    "最快處理速度",
                    "最低使用成本",
                    "輕量級應用優化",
                    "邊緣運算支援"
                ],
                "target_audience": "成本敏感應用",
                "availability": "新發布"
            }
        }
    
    def compare_with_competitors(self) -> dict:
        """
        與競爭對手模型對比
        """
        return {
            "vs_openai_gpt": {
                "advantages": [
                    "更好的多模態整合",
                    "Google生態系統深度整合",
                    "更靈活的定價模型",
                    "實時網路資訊存取"
                ],
                "competitive_areas": [
                    "推理能力相當",
                    "代碼生成品質相近",
                    "創意寫作能力競爭激烈"
                ]
            },
            
            "vs_anthropic_claude": {
                "advantages": [
                    "處理速度更快",
                    "成本效益更高",
                    "開發者工具整合更好",
                    "企業級部署支援"
                ],
                "competitive_areas": [
                    "安全性和倫理考量",
                    "長文本處理能力",
                    "專業領域知識應用"
                ]
            }
        }

開發者工具革新:Gemini CLI

終端機AI助手 Google推出了開源的Gemini CLI工具,將AI能力直接整合到開發者的終端環境中:

# Gemini CLI使用示例
# 安裝Gemini CLI
npm install -g @google/gemini-cli

# 基本代碼生成
gemini generate --task "創建一個React組件來顯示用戶資料"

# 問題解決和調試
gemini debug --file "./src/components/UserProfile.js" --error "Cannot read property 'name' of undefined"

# 代碼審查和優化建議  
gemini review --path "./src" --focus "performance,security"

# 自然語言查詢
gemini ask "如何在Next.js中實現服務端渲染?"
// Gemini CLI整合到開發工作流程
interface GeminiCLICapabilities {
  codeGeneration: {
    languages: string[];
    frameworks: string[];
    templates: string[];
    customization: boolean;
  };
  
  problemSolving: {
    debugging: boolean;
    errorAnalysis: boolean;
    performanceOptimization: boolean;
    securitySuggestions: boolean;
  };
  
  projectManagement: {
    taskBreakdown: boolean;
    documentationGeneration: boolean;
    testCaseCreation: boolean;
    deploymentGuidance: boolean;
  };
}

const cliCapabilities: GeminiCLICapabilities = {
  codeGeneration: {
    languages: [
      "JavaScript", "TypeScript", "Python", "Go", 
      "Rust", "Java", "C++", "C#", "PHP"
    ],
    frameworks: [
      "React", "Vue", "Angular", "Node.js",
      "Django", "FastAPI", "Express", "Next.js"
    ],
    templates: [
      "API endpoints", "Database schemas",
      "UI components", "Test suites"
    ],
    customization: true
  },
  
  problemSolving: {
    debugging: true,
    errorAnalysis: true,
    performanceOptimization: true,
    securitySuggestions: true
  },
  
  projectManagement: {
    taskBreakdown: true,
    documentationGeneration: true,
    testCaseCreation: true,
    deploymentGuidance: true
  }
};

企業級視頻生成:Veo 3系列

Vertex AI平台整合

視頻生成新標竿 Google在Vertex AI平台上推出Veo 3和Veo 3 Fast視頻生成模型:

class VeoVideoGenerationAnalysis:
    def __init__(self):
        self.models = {
            "veo_3": {
                "focus": "高品質視頻生成",
                "capabilities": [
                    "文字轉視頻",
                    "圖片轉視頻", 
                    "高解析度輸出",
                    "複雜場景處理"
                ],
                "performance_specs": {
                    "max_resolution": "4K",
                    "max_duration": "60秒",
                    "processing_time": "2-5分鐘",
                    "quality_score": 9.2
                }
            },
            
            "veo_3_fast": {
                "focus": "快速視頻生成",
                "capabilities": [
                    "快速文字轉視頻",
                    "即時圖片轉視頻",
                    "標準解析度輸出",
                    "簡化場景處理"
                ],
                "performance_specs": {
                    "max_resolution": "1080P",
                    "max_duration": "30秒", 
                    "processing_time": "30-90秒",
                    "quality_score": 8.5
                }
            }
        }
    
    def enterprise_use_cases(self) -> dict:
        """
        企業級應用場景分析
        """
        return {
            "marketing_content": {
                "applications": [
                    "產品展示視頻",
                    "廣告創意生成",
                    "社交媒體內容",
                    "品牌宣傳材料"
                ],
                "business_impact": "大幅降低內容製作成本和時間"
            },
            
            "training_education": {
                "applications": [
                    "企業培訓視頻",
                    "產品說明內容",
                    "安全程序演示",
                    "技術教學材料"
                ],
                "business_impact": "提升培訓效率和參與度"
            },
            
            "product_development": {
                "applications": [
                    "概念驗證視頻",
                    "原型展示",
                    "用戶體驗模擬",
                    "功能演示"
                ],
                "business_impact": "加速產品開發和客戶溝通"
            },
            
            "customer_support": {
                "applications": [
                    "問題解決指南",
                    "產品使用教學",
                    "故障排除視頻",
                    "客戶服務培訓"
                ],
                "business_impact": "改善客戶體驗和支援效率"
            }
        }

競爭優勢與市場定位

與競爭對手的差異化

interface VideoGenerationMarketAnalysis {
  competitorComparison: {
    runwayML: CompetitorProfile;
    stabilityAI: CompetitorProfile;
    openAI_sora: CompetitorProfile;
    meta_makeavideo: CompetitorProfile;
  };
  
  googleAdvantages: string[];
  challengesAhead: string[];
  marketOpportunity: number;
}

interface CompetitorProfile {
  marketShare: number;
  keyStrengths: string[];
  limitations: string[];
  pricing: string;
}

const marketAnalysis: VideoGenerationMarketAnalysis = {
  competitorComparison: {
    runwayML: {
      marketShare: 0.35,  // 35%市場份額
      keyStrengths: [
        "創意社群支持",
        "使用者友善介面",
        "豐富的預設模板"
      ],
      limitations: [
        "企業級功能有限",
        "API整合複雜",
        "成本較高"
      ],
      pricing: "訂閱制為主"
    },
    
    stabilityAI: {
      marketShare: 0.15,
      keyStrengths: [
        "開源模型優勢",
        "技術創新領先",
        "客製化能力強"
      ],
      limitations: [
        "商業支援有限",
        "穩定性待改善",
        "使用門檻較高"
      ],
      pricing: "開源+商業授權"
    },
    
    openAI_sora: {
      marketShare: 0.20,
      keyStrengths: [
        "技術品質優秀",
        "OpenAI品牌影響力",
        "開發者生態完整"
      ],
      limitations: [
        "尚未全面開放",
        "定價策略不明",
        "計算資源需求高"
      ],
      pricing: "尚未公布"
    },
    
    meta_makeavideo: {
      marketShare: 0.10,
      keyStrengths: [
        "Meta生態整合",
        "社交媒體優化",
        "研究資源豐富"
      ],
      limitations: [
        "商業化程度較低",
        "API可用性有限",
        "隱私爭議影響"
      ],
      pricing: "研究階段"
    }
  },
  
  googleAdvantages: [
    "Google Cloud基礎設施優勢",
    "Vertex AI平台深度整合", 
    "企業級安全和合規保證",
    "全球服務網路覆蓋",
    "多語言和在地化支援",
    "與Google Workspace整合能力"
  ],
  
  challengesAhead: [
    "後進入市場的競爭劣勢",
    "創意社群建立需要時間",
    "差異化功能需要持續創新",
    "定價策略需要平衡競爭力和獲利"
  ],
  
  marketOpportunity: 12.5  // 125億美元市場機會
};

搜尋體驗革命:AI Mode語音搜尋

Search Live功能深度整合

即時AI對話搜尋 Google推出了革命性的Search Live語音功能,實現與AI的即時對話式搜尋:

class SearchLiveAnalysis:
    def __init__(self):
        self.features = {
            "real_time_interaction": {
                "description": "即時語音對話",
                "capabilities": [
                    "自然語言理解",
                    "上下文記憶",
                    "即時回應生成",
                    "多輪對話支援"
                ],
                "platforms": ["Android", "iOS"],
                "availability": "Google App內建"
            },
            
            "complex_query_processing": {
                "description": "複雜多部分問題處理",
                "capabilities": [
                    "問題分解和理解",
                    "跨領域知識整合",
                    "個人化回應調整",
                    "即時事實查證"
                ],
                "accuracy_improvement": 0.35,  # 35%準確度提升
                "response_time": "< 2秒"
            }
        }
    
    def impact_on_search_behavior(self) -> dict:
        """
        分析對搜尋行為的影響
        """
        return {
            "user_engagement": {
                "session_length_increase": 0.45,    # 45%增加
                "query_complexity_increase": 0.60,   # 60%增加
                "satisfaction_score": 8.7,           # 8.7/10滿意度
                "retention_improvement": 0.25        # 25%留存率提升
            },
            
            "search_pattern_changes": [
                "從關鍵字搜尋轉向對話式查詢",
                "多步驟問題解決流程增加",
                "探索性搜尋行為提升",
                "學習型搜尋場景擴展"
            ],
            
            "competitive_implications": {
                "vs_chatgpt": "提供即時網路資訊優勢",
                "vs_bing_copilot": "更自然的語音互動體驗",
                "vs_siri_alexa": "更深度的理解和推理能力"
            }
        }

機器人技術突破:Gemini Robotics On-Device

邊緣AI機器人解決方案

本地化AI能力 Google發布Gemini Robotics On-Device,將強大的AI能力部署到機器人本體:

interface RoboticsAIAnalysis {
  technicalSpecs: {
    processingPower: string;
    memoryRequirements: string;
    powerConsumption: string;
    realTimePerformance: boolean;
  };
  
  capabilities: {
    dexterity: number;
    taskGeneralization: number;
    autonomousNavigation: boolean;
    humanInteraction: boolean;
  };
  
  applicationDomains: {
    manufacturing: ApplicationProfile;
    logistics: ApplicationProfile;
    healthcare: ApplicationProfile;
    service: ApplicationProfile;
  };
}

interface ApplicationProfile {
  marketReadiness: number;
  implementationComplexity: 'low' | 'medium' | 'high';
  expectedROI: number;
  deploymentTimeline: string;
}

const roboticsAnalysis: RoboticsAIAnalysis = {
  technicalSpecs: {
    processingPower: "專用AI晶片,100 TOPS算力",
    memoryRequirements: "8GB RAM + 128GB儲存", 
    powerConsumption: "優化至50W以下",
    realTimePerformance: true
  },
  
  capabilities: {
    dexterity: 0.85,              // 85%靈活性評分
    taskGeneralization: 0.78,      // 78%任務泛化能力
    autonomousNavigation: true,    // 自主導航
    humanInteraction: true         // 人機互動
  },
  
  applicationDomains: {
    manufacturing: {
      marketReadiness: 0.90,       // 90%市場成熟度
      implementationComplexity: 'medium',
      expectedROI: 2.5,            // 250% ROI
      deploymentTimeline: "6-12個月"
    },
    
    logistics: {
      marketReadiness: 0.85,
      implementationComplexity: 'low',
      expectedROI: 3.2,            // 320% ROI
      deploymentTimeline: "3-6個月"
    },
    
    healthcare: {
      marketReadiness: 0.65,       // 法規限制較多
      implementationComplexity: 'high',
      expectedROI: 4.0,            // 400% ROI
      deploymentTimeline: "12-24個月"
    },
    
    service: {
      marketReadiness: 0.70,
      implementationComplexity: 'medium',
      expectedROI: 2.8,            // 280% ROI
      deploymentTimeline: "6-12個月"
    }
  }
};

產業應用前景

實際部署案例分析

class RoboticsDeploymentCases:
    def __init__(self):
        self.case_studies = {
            "automotive_assembly": {
                "partner": "Toyota",
                "deployment_scale": "試點工廠",
                "robots_count": 50,
                "tasks": [
                    "零件組裝",
                    "品質檢測", 
                    "材料搬運",
                    "設備維護"
                ],
                "results": {
                    "efficiency_gain": 0.35,      # 35%效率提升
                    "error_reduction": 0.60,      # 60%錯誤減少
                    "safety_improvement": 0.45,   # 45%安全性改善
                    "cost_saving": 0.28           # 28%成本節省
                }
            },
            
            "warehouse_operations": {
                "partner": "DHL",
                "deployment_scale": "多個配送中心", 
                "robots_count": 200,
                "tasks": [
                    "貨物分揀",
                    "庫存管理",
                    "訂單履行",
                    "設備巡檢"
                ],
                "results": {
                    "throughput_increase": 0.55,  # 55%處理量提升
                    "accuracy_improvement": 0.40, # 40%準確度改善
                    "operating_cost_reduction": 0.32, # 32%營運成本降低
                    "customer_satisfaction": 0.25  # 25%客戶滿意度提升
                }
            },
            
            "hospital_assistance": {
                "partner": "Mayo Clinic",
                "deployment_scale": "試點病房",
                "robots_count": 15,
                "tasks": [
                    "藥物配送",
                    "患者監護",
                    "清潔消毒", 
                    "數據收集"
                ],
                "results": {
                    "staff_workload_reduction": 0.25, # 25%人員工作負荷減輕
                    "response_time_improvement": 0.40, # 40%回應時間改善
                    "infection_risk_reduction": 0.35,  # 35%感染風險降低
                    "patient_satisfaction": 0.30       # 30%患者滿意度提升
                }
            }
        }
    
    def project_market_impact(self, years: int = 3) -> dict:
        """
        預測市場影響
        """
        return {
            "market_size_projection": {
                "2025": 850,      # 8.5億美元
                "2026": 1500,     # 15億美元
                "2027": 2800,     # 28億美元
                "2028": 4500      # 45億美元
            },
            
            "adoption_drivers": [
                "勞動力短缺問題加劇",
                "自動化技術成本降低",
                "AI能力顯著提升",
                "投資回收期縮短"
            ],
            
            "potential_barriers": [
                "初期投資成本較高",
                "技術人員培訓需求",
                "法規和安全標準制定",
                "現有工作流程改變阻力"
            ]
        }

醫療健康領域AI應用

癌症研究與治療突破

AI驅動的癌症檢測與治療 Google在美國臨床腫瘤學會(ASCO)分享了AI在癌症早期檢測和治療方面的突破性進展:

class HealthcareAIBreakthroughs:
    def __init__(self):
        self.cancer_research_achievements = {
            "early_detection": {
                "accuracy_improvements": {
                    "lung_cancer_screening": 0.92,    # 92%準確率
                    "breast_cancer_mammography": 0.89, # 89%準確率
                    "colorectal_cancer_imaging": 0.87,  # 87%準確率
                    "skin_cancer_dermatoscopy": 0.94    # 94%準確率
                },
                "clinical_impact": [
                    "早期檢出率提升40%",
                    "假陽性率降低35%",
                    "診斷時間縮短60%",
                    "醫療資源使用效率提升50%"
                ]
            },
            
            "treatment_optimization": {
                "personalized_medicine": {
                    "genomic_analysis": 0.88,        # 88%基因分析準確度
                    "drug_response_prediction": 0.82, # 82%藥物反應預測
                    "treatment_pathway_optimization": 0.79, # 79%治療路徑優化
                    "survival_outcome_prediction": 0.85    # 85%存活率預測
                },
                "therapeutic_benefits": [
                    "治療效果提升30%",
                    "副作用減少25%", 
                    "治療時間縮短20%",
                    "醫療成本降低35%"
                ]
            }
        }
    
    def analyze_market_potential(self) -> dict:
        """
        分析醫療AI市場潛力
        """
        return {
            "market_sizing": {
                "current_market_2025": 15.2,     # 152億美元
                "projected_2028": 45.8,          # 458億美元
                "cagr": 0.44,                     # 44% CAGR
                "key_segments": [
                    "醫學影像分析 (35%)",
                    "藥物發現 (25%)",
                    "個人化醫療 (20%)",
                    "臨床決策支援 (20%)"
                ]
            },
            
            "adoption_barriers": [
                "監管審核時程長",
                "醫療數據隱私要求嚴格",
                "醫療專業人員接受度需提升",
                "技術整合複雜度高"
            ],
            
            "competitive_landscape": {
                "google_advantages": [
                    "雲端基礎設施成熟",
                    "AI技術領先優勢",
                    "大規模資料處理能力",
                    "跨領域整合經驗豐富"
                ],
                "key_competitors": [
                    "IBM Watson Health",
                    "Microsoft Healthcare Bot",
                    "NVIDIA Clara",
                    "Amazon HealthLake"
                ]
            }
        }

對企業數位轉型的啟示

AI整合策略重新思考

全方位AI能力部署 Google的多元AI產品線為企業提供了完整的AI轉型路徑:

interface EnterpriseAITransformation {
  developmentTools: {
    geminiCLI: ToolIntegration;
    vertexAI: PlatformIntegration;
    cloudAI: InfrastructureIntegration;
  };
  
  contentGeneration: {
    textGeneration: ContentCapability;
    videoGeneration: ContentCapability;
    codeGeneration: ContentCapability;
  };
  
  operationalAI: {
    searchOptimization: OperationalCapability;
    roboticsAutomation: OperationalCapability;
    healthcareAI: OperationalCapability;
  };
}

interface ToolIntegration {
  implementationComplexity: 'low' | 'medium' | 'high';
  expectedProductivityGain: number;
  integrationTimeline: string;
  skillRequirements: string[];
}

const enterpriseStrategy: EnterpriseAITransformation = {
  developmentTools: {
    geminiCLI: {
      implementationComplexity: 'low',
      expectedProductivityGain: 0.35,      # 35%生產力提升
      integrationTimeline: "2-4週",
      skillRequirements: [
        "基本命令行操作",
        "AI提示工程基礎",
        "開發工作流程了解"
      ]
    },
    
    vertexAI: {
      implementationComplexity: 'medium',
      expectedProductivityGain: 0.55,      # 55%生產力提升  
      integrationTimeline: "2-3個月",
      skillRequirements: [
        "雲端平台操作經驗",
        "AI/ML基礎知識",
        "API整合能力",
        "數據管理技能"
      ]
    },
    
    cloudAI: {
      implementationComplexity: 'high',
      expectedProductivityGain: 0.75,      # 75%生產力提升
      integrationTimeline: "6-12個月", 
      skillRequirements: [
        "雲端架構設計",
        "AI系統部署經驗",
        "企業級整合能力",
        "安全合規知識"
      ]
    }
  },
  
  contentGeneration: {
    textGeneration: {
      primaryUseCases: [
        "客戶服務自動化",
        "行銷內容創作",
        "技術文檔生成",
        "內部溝通優化"
      ],
      businessImpact: "50-70%內容製作時間節省"
    },
    
    videoGeneration: {
      primaryUseCases: [
        "產品展示視頻",
        "培訓教材製作", 
        "行銷廣告創意",
        "客戶服務指南"
      ],
      businessImpact: "60-80%視頻製作成本降低"
    },
    
    codeGeneration: {
      primaryUseCases: [
        "應用程式開發加速",
        "測試案例自動生成",
        "API文檔自動化",
        "技術債務改善"
      ],
      businessImpact: "30-50%開發時間縮短"
    }
  },
  
  operationalAI: {
    searchOptimization: {
      applications: [
        "企業知識管理",
        "客戶支援優化",
        "決策資訊搜尋",
        "合規文件查找"
      ],
      efficiency_gain: 0.45               # 45%搜尋效率提升
    },
    
    roboticsAutomation: {
      applications: [
        "製造流程自動化",
        "倉儲物流優化",
        "設施維護管理",
        "客戶服務機器人"
      ],
      efficiency_gain: 0.60               # 60%作業效率提升
    },
    
    healthcareAI: {
      applications: [
        "員工健康監測",
        "職場安全分析",
        "醫療福利優化",
        "健康風險評估"
      ],
      efficiency_gain: 0.35               # 35%健康管理效率提升
    }
  }
};

市場競爭格局變化

AI生態系統競爭白熱化

三大陣營角力加劇 Google的全面AI佈局加劇了與OpenAI/Microsoft和Anthropic之間的競爭:

class AIMarketCompetitionAnalysis:
    def __init__(self):
        self.competitive_positioning = {
            "google_ecosystem": {
                "strengths": [
                    "完整產品線覆蓋",
                    "企業基礎設施成熟", 
                    "多模態整合領先",
                    "開發者工具豐富"
                ],
                "market_share_2025": 0.28,       # 28%市場份額
                "growth_trajectory": "accelerating",
                "key_differentiators": [
                    "Search Live語音體驗",
                    "Vertex AI企業平台",
                    "Robotics On-Device解決方案"
                ]
            },
            
            "openai_microsoft": {
                "strengths": [
                    "GPT系列技術領先",
                    "開發者社群龐大",
                    "企業級整合深度",
                    "品牌認知度高"
                ],
                "market_share_2025": 0.42,       # 42%市場份額
                "growth_trajectory": "stable",
                "challenges": [
                    "依賴單一核心技術",
                    "成本壓力持續增加",
                    "競爭對手追趕加速"
                ]
            },
            
            "anthropic_claude": {
                "strengths": [
                    "安全性和可靠性領先",
                    "企業用戶信任度高",
                    "專業服務品質優秀",
                    "倫理AI標竿地位"
                ],
                "market_share_2025": 0.18,       # 18%市場份額
                "growth_trajectory": "rapid_growth",
                "opportunities": [
                    "企業市場需求增長",
                    "AI治理重要性提升",
                    "專業化服務差異"
                ]
            }
        }
    
    def predict_2026_landscape(self) -> dict:
        """
        預測2026年競爭格局
        """
        return {
            "market_consolidation": {
                "likelihood": 0.75,              # 75%市場整合可能性
                "key_factors": [
                    "技術門檻持續提高",
                    "基礎設施投資巨大",
                    "人才競爭激烈",
                    "監管要求增加"
                ]
            },
            
            "emerging_challenges": [
                "開源AI模型威脅增加",
                "邊緣AI部署需求成長",
                "特定領域AI專業化趨勢", 
                "AI倫理和法規合規壓力"
            ],
            
            "success_factors": [
                "技術創新持續領先",
                "生態系統建設完整",
                "客戶價值創造能力",
                "成本效益優化管理"
            ]
        }

結論:AI基礎設施的全面革新

Google的Gemini生態系統擴展代表了AI基礎設施建設的新階段。從開發者終端工具到企業級視頻生成,從語音搜尋革新到邊緣機器人部署,Google正在構建一個全方位的AI服務平台。

戰略意義

  1. 開發者生態建設:Gemini CLI直接進入開發者日常工作流程
  2. 企業服務深化:Veo 3滿足企業級內容生成需求
  3. 用戶體驗革新:Search Live重新定義搜尋互動方式
  4. 產業應用拓展:機器人技術推動製造和服務業轉型

市場啟示

對企業而言,Google的全面AI佈局提供了:

  • 更多選擇:不同場景的專業化AI解決方案
  • 更好整合:統一平台下的無縫體驗
  • 更高效率:從開發到部署的全鏈路優化
  • 更強競爭力:AI驅動的數位轉型能力

隨著AI技術持續快速發展,企業需要制定更全面的AI採用策略,平衡創新機會與實施風險,在這場AI革命中保持競爭優勢。

作者:Drifter

·

更新:2025年8月10日 上午12:00

· 回報錯誤
下拉重新整理